

 Wireshark Lab: TCP v6.0

Supplement to Computer Networking: A Top-Down

Approach, 6
th

ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll do so by

analyzing a trace of the TCP segments sent and received in transferring a 150KB file (containing the

text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your computer to a remote server.

We’ll study TCP’s use of sequence and acknowledgement numbers for providing reliable data transfer;

we’ll see TCP’s congestion control algorithm – slow start and congestion avoidance – in action; and

we’ll look at TCP’s receiver-advertised flow control mechanism. We’ll also briefly consider TCP

connection setup and we’ll investigate the performance (throughput and round-trip time) of the TCP

connection between your computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the text
1

.

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet trace of the

TCP transfer of a file from your computer to a remote server. You’ll do so by accessing a Web page

that will allow you to enter the name of a file stored on your computer (which contains the ASCII text

of Alice in Wonderland), and then transfer the file to a Web server using the HTTP POST method (see

section 2.2.3 in the text). We’re using the POST method rather than the GET method as we’d like to

transfer a large amount of data from your computer to another computer. Of course, we’ll be running

Wireshark during this time to obtain the trace of the TCP segments sent and received from your

computer.

Do the following:

1

References to figures and sections are for the 6
th

edition of our text, Computer Networks, A Top-down

Approach, 6
th

ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

 Start up your web browser. Go the http://gaia.cs.umass.edu/wiresharklabs/alice.txt and

retrieve an ASCII copy of Alice in Wonderland. Store this file somewhere on your computer.

 Next go to http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-file1.html.

 You should see a screen that looks like:

 Use the Browse button in this form to enter the name of the file (full path name) on your

computer containing Alice in Wonderland (or do so manually). Don’t yet press the “Upload

alice.txt file” button.

 Now start up Wireshark and begin packet capture (Capture->Start) and then press OK on the

Wireshark Packet Capture Options screen (we’ll not need to select any options here).

 Returning to your browser, press the “Upload alice.txt file” button to upload the file to the

gaia.cs.umass.edu server. Once the file has been uploaded, a short congratulations message

will be displayed in your browser window.

 Stop Wireshark packet capture. Your Wireshark window should look similar to the window

shown below.

If you are unable to run Wireshark on a live network connection, you can download a packet trace file

that was captured while following the steps above on one of the author’s computers
2

. You may well

find it valuable to download this trace even if you’ve captured your own trace and use it, as well as

your own trace, when you explore the questions below.

2. A first look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level view of the

trace.

 First, filter the packets displayed in the Wireshark window by entering “tcp” (lowercase,

no quotes, and don’t forget to press return after entering!) into the display filter

specification window towards the top of the Wireshark window.

What you should see is series of TCP and HTTP messages between your computer and

gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN message.

You should see an HTTP POST message. Depending on the version of

2

Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file tcpethereal-

trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s computers, while

performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it into

Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the tcp-ethereal-trace-1

trace file.

Wireshark you are using, you might see a series of “HTTP Continuation” messages being sent from

your computer to gaia.cs.umass.edu. Recall from our discussion in the earlier HTTP Wireshark lab,

that is no such thing as an HTTP Continuation message – this is Wireshark’s way of indicating that

there are multiple TCP segments being used to carry a single HTTP message. In more recent versions

of Wireshark, you’ll see “[TCP segment of a reassembled PDU]” in the Info column of the Wireshark

display to indicate that this TCP segment contained data that belonged to an upper layer protocol

message (in our case here, HTTP). You should also see TCP ACK segments being returned from

gaia.cs.umass.edu to your computer.

Answer the following questions, by opening the Wireshark captured packet file tcpethereal-trace-1 in

http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (that is download the trace and open that

trace in Wireshark; see footnote 2). Whenever possible, when answering a question you should hand

in a printout of the packet(s) within the trace that you used to answer the question asked. Annotate the

printout
3

to explain your answer. To print a packet, use File->Print, choose Selected packet only,

choose Packet summary line, and select the minimum amount of packet detail that you need to answer

the question.

1. What is the IP address and TCP port number used by the client computer (source) that is

transferring the file to gaia.cs.umass.edu? To answer this question, it’s probably easiest to

select an HTTP message and explore the details of the TCP packet used to carry this HTTP

message, using the “details of the selected packet header window” (refer to Figure 2 in the

“Getting Started with Wireshark” Lab if you’re uncertain about the Wireshark windows.

2. What is the IP address of gaia.cs.umass.edu? On what port number is it sending and receiving

TCP segments for this connection?

3. What is the IP address and TCP port number used by your client computer (source)

to transfer the file to gaia.cs.umass.edu?

3

What do we mean by “annotate”? If you hand in a paper copy, please highlight where in the printout

you’ve found the answer and add some text (preferably with a colored pen) noting what you found in

what you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight
and annotate.

If you have been able to create your own trace, answer the following question:

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of captured packets”

window so that it shows information about the TCP segments containing the HTTP messages, rather

than about the HTTP messages. To have Wireshark do this, select Analyze->Enabled Protocols. Then

uncheck the HTTP box and select OK. You should now see a Wireshark window that looks like:

This is what we’re looking for -a series of TCP segments sent between your computer and

gaia.cs.umass.edu. We will use the packet trace that you have captured (and/or the packet trace tcp-

ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wiresharktraces.zip; see earlier footnote)

to study TCP behavior in the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

4. What is the sequence number of the TCP SYN segment that is used to initiate the TCP

connection between the client computer and gaia.cs.umass.edu? What is it in the segment that

identifies the segment as a SYN segment?

5. What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu to the client

computer in reply to the SYN? What is the value of the Acknowledgement field in the

SYNACK segment? How did gaia.cs.umass.edu determine that value? What is it in the

segment that identifies the segment as a SYNACK segment?

6. What is the sequence number of the TCP segment containing the HTTP POST command?

Note that in order to find the POST command, you’ll need to dig into the packet content field

at the bottom of the Wireshark window, looking for a segment with a “POST” within its

DATA field.

7. Consider the TCP segment containing the HTTP POST as the first segment in the TCP

connection. What are the sequence numbers of the first six segments in the

TCP connection (including the segment containing the HTTP POST)? At what

time was each segment sent? When was the ACK for each segment received?

Given the difference between when each TCP segment was sent, and when its

acknowledgement was received, what is the RTT value for each of the six

segments? What is the EstimatedRTT value (see Section 3.5.3, page 239 in

text) after the receipt of each ACK? Assume that the value of the

EstimatedRTT is equal to the measured RTT for the first segment, and then is

computed using the EstimatedRTT equation on page 239 for all subsequent

segments.

Note: Wireshark has a nice feature that allows you to plot the RTT for each

of the TCP segments sent. Select a TCP segment in the “listing of

captured packets” window that is being sent from the client to the

gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

8. What is the length of each of the first six TCP segments?
4

9. What is the minimum amount of available buffer space advertised at the received for the

entire trace? Does the lack of receiver buffer space ever throttle the sender?

10. Are there any retransmitted segments in the trace file? What did you check for (in the trace)

in order to answer this question?

11. How much data does the receiver typically acknowledge in an ACK? Can you identify cases

where the receiver is ACKing every other received segment (see Table 3.2 on page 247 in the

text).

12. What is the throughput (bytes transferred per unit time) for the TCP connection? Explain how

you calculated this value.

4

The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This is because the

computer on which the trace was gathered has an Ethernet card that limits the length of the maximum

IP packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500

byte value is the standard maximum length allowed by Ethernet. If your trace indicates a TCP length

greater than 1500 bytes, and your computer is using an Ethernet connection, then Wireshark is

reporting the wrong TCP segment length; it will likely also show only one large TCP segment rather

than multiple smaller segments. Your computer is indeed probably sending multiple smaller segments,

as indicated by the ACKs it receives. This inconsistency in reported segment lengths is due to the

interaction between the Ethernet driver and the Wireshark software. We recommend that if you have

this inconsistency, that you perform this lab using the provided trace file.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server. Rather than

(tediously!) calculating this from the raw data in the Wireshark window, we’ll use one of Wireshark’s

TCP graphing utilities -Time-Sequence-Graph(Stevens) -to plot out data.

 Select a TCP segment in the Wireshark’s “listing of captured-packets” window. Then select

the menu : Statistics->TCP Stream Graph-> Time-Sequence-Graph(Stevens). You should see

a plot that looks similar to the following plot, which was created from the captured packets in

the packet trace tcp-ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-

traces.zip (see earlier footnote):

Here, each dot represents a TCP segment sent, plotting the sequence number of the segment

versus the time at which it was sent. Note that a set of dots stacked above each other

represents a series of packets that were sent back-to-back by the sender.

Answer the following questions for the TCP segments the packet trace tcp-etherealtrace-1 in

http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

13. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence number versus

time plot of segments being sent from the client to the gaia.cs.umass.edu server. Can you

identify where TCP’s slowstart phase begins and ends, and where congestion avoidance

takes over? Comment on ways in which the measured data differs from the idealized

behavior of TCP that we’ve studied in the text.

14. Answer each of two questions above for the trace that you have gathered when you

transferred a file from your computer to gaia.cs.umass.edu

