Introdução aos Sistemas de Comunicações

Edmar José do Nascimento (Princípios de Comunicação) http://www.univasf.edu.br/~edmar.nascimento

Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica

Roteiro

- Sistemas de Comunicações
 - Introdução

- Princípios de Comunicação
 - Plano de Curso

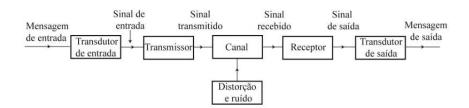
Roteiro

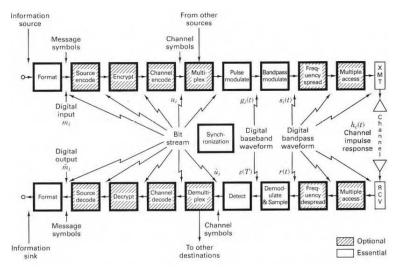
Sistemas de ComunicaçõesIntrodução

- Princípios de Comunicação
 - Plano de Curso

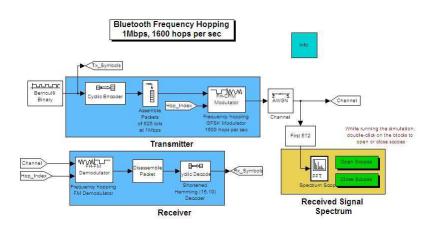
Conceitos Básicos

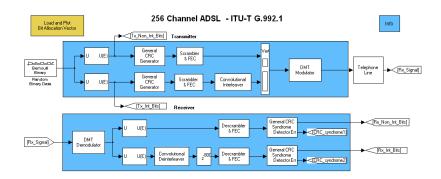
- Comunicação
 - Processo de transferência de informação gerada em um ponto no tempo e espaço por uma fonte para um outro ponto no tempo e espaço do destino
- Tele -
 - Do grego têle longe, a distância
- O termo telecomunicações se refere à transmissão, emissão ou recepção de sinais elétricos através do uso de guias de ondas ou do espaço livre como meio físico de comunicação
- Outros meios de comunicação são possíveis, mas não são de interesse para o engenheiro eletricista.


Sistemas de Comunicações

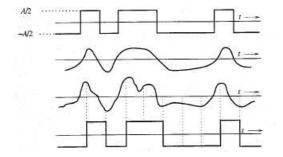

Modelo de um Sistema de Comunicação

- Um sistema de comunicação simples é formado pelos seguintes blocos:
 - Fonte
 - Transmissor
 - Canal
 - Receptor
 - Destino
- O transmissor e o receptor podem ser muito complexos, como no caso dos sistemas de comunicações digitais

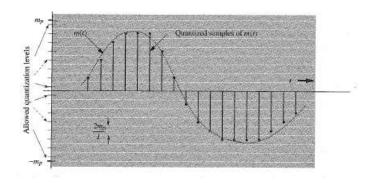

Modelo de um Sistema de Comunicação

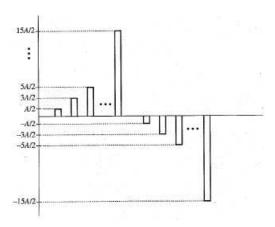

Modelo de um Sistema de Comunicação Digital

Bluetooth



ADSL




- Os sistemas de comunicação podem ser classificados como analógicos ou digitais
 - Relativo à natureza da mensagem transmitida
 - As formas de onda transmitidas são em geral analógicas para ambos os casos
- Sistemas digitais apresentam diversas vantagens
 - Utilização de repetidores regenerativos
 - Possibilidade de usar criptografia e códigos para a correção de erros
 - Hardware digital teve uma redução de custo considerável

Analógico versus Digital (Regeneração do sinal)

- Uma fonte de informação analógica pode ser convertida para o formato digital
 - Amostragem (Teorema de Nyquist)
 - Quantização
- Os símbolos discretos resultantes da quantização podem ser mapeados para um outro conjunto de símbolos
 - Símbolos binários são frequentemente utilizados
- Símbolos discretos são finalmente mapeados para formas de ondas físicas
 - Onda quadrada por exemplo

Digit	Binary equivalent	Pulse code waveform
0	0000	類別 図 個
1	0001	888
2	0010	WH W
3	0011	90 NO. NO.
4	0100	- W W W
5	0101	0 N
6	0110	EE 50 M
7	0111	- W. M. M.
8	1000	- N N N
9	1001	M 45 M.
10	1010	10 M M
11	1011	m m.s.
12	1100	N N N
13	1101	20 NO NO
14	1110	- 10 R R R
15	1111	. 随即数据.

Análise de Sistemas de Comunicações

- Largura de Banda ou largura de faixa
 - Faixa de frequências que podem ser transmitidas com uma fidelidade razoável
 - Propriedades dos canais de comunicação
 - Quanto maior, mais rápido os símbolos podem ser transmitidos
 - Geralmente é limitada artificialmente
- Potência
 - Relacionada com a energia utilizada para transmitir um símbolo de informação
 - Quanto maior a potência, menos o ruído do canal irá influenciar o símbolo transmitido
 - Razão Sinal-Ruído (SNR) é uma medida da qualidade do sinal

Análise de Sistemas de Comunicações

- Capacidade do canal e taxa de dados
 - A largura de banda e a potência do sinal impõem limites na taxa de transmissão de dados para um determinado canal
 - Para o canal AWGN (Additive White Gaussian Noise), a capacidade do canal é dada pela fórmula de Shannon

$$C = B \log_2 (1 + SNR) bits/s$$

 Não é possível transmitir dados, com probabilidade de erro próxima de zero, em taxas superiores à capacidade do canal

Análise de Sistemas de Comunicações

Modulação

- Adequação das freqüências do sinal ao meio de transmissão
- Uma portadora (sinal de alta frequência) tem alguma de suas propriedades modificadas (amplitude, frequência ou fase) pelo sinal em banda básica a ser transmitido
- A modulação é essencial para que seja possível a utilização de determinados meios físicos
- Quanto maior a frequência, menor é o comprimento de onda e consequentemente, menor o tamanho da antena $(\sim 1/10\lambda)$

Estudo das Telecomunicações

- O estudo de telecomunicações abrange uma infinidade de tópicos
 - Modulação
 - Teoria da Informação
 - Codificação de fonte e canal
 - Redes de telefonia e de transmissão de dados
 - Técnicas de múltiplo acesso
 - Criptografia
 - Comunicações móveis
 - Antenas e propagação
 - Guias de ondas

Estudo das Telecomunicações

- Na engenharia elétrica, a área de telecomunicações possui forte conexão com
 - Dispositivos eletrônicos
 - Processamento digital de sinais
 - Eletromagnetismo
 - Sistemas embarcados (embutidos)
 - Teoria de controle

Funções na Área de Telecomunicações

- São relacionadas à área de telecomunicações as seguintes funções:
 - Desenvolvimento e operação de sistemas de comunicação
 - Atuação em empresas de telemática
 - Atuação em empresas de telefonia fixa, móvel e de satélites
 - Implantação de sistemas de cabeamento,
 - Atuação em empresas de radiodifusão
 - Atuação na área de defesa
 - Desenvolver pesquisas na área de telecomunicações

Roteiro

- Sistemas de Comunicações
 - Introdução
- Princípios de Comunicação
 - Plano de Curso

Ementa da Disciplina

Ementa

Correlação e densidade espectral de potência. Princípio da amostragem. Transmissão de sinais. Modulação de canal. Modulação em amplitude, em fase e em frequência. Transmissores e receptores. Análise de circuitos de rádio e de TV. Modulação digital de sinais. Ruídos.

Pré-requisitos

Séries e transformadas de Fourier. Resposta em frequência de sistemas lineares. Teoria das probabilidades.

Ementa da Disciplina

Ementa

Correlação e densidade espectral de potência. Princípio da amostragem. Transmissão de sinais. Modulação de canal. Modulação em amplitude, em fase e em frequência. Transmissores e receptores. Análise de circuitos de rádio e de TV. Modulação digital de sinais. Ruídos.

Pré-requisitos

Séries e transformadas de Fourier. Resposta em frequência de sistemas lineares. Teoria das probabilidades.

Bibliografia

- Lathi, B. P.; Ding, Zhi Sistemas de Comunicações Analógicos e Digitais Modernos, 4ª edição. LTC.
- Haykin, S. Introdução aos Sistemas de Comunicação, 2ª edição, Bookman.
- Haykin, S. Sistemas de comunicação: analógicos e digitais, 2004, Bookman.
- Carvalho, Rogério Muniz Comunicações analógicas e digitais, 2009, LTC.

Avaliação

- 3 notas (MP = (EE1+EE2+EE3)/3)
 - Provas escritas
 - Exercícios em sala
- Prova de 2^a Chamada
 - Ato normativo Nº 001/2011.
- 75% de presença exigida

Tópicos Abordados na Disciplina

- Correlação. Densidade espectral de energia e de potência (Cap. 3)
- Modulação em amplitude (Cap. 4)
- Modulação em ângulo (Cap. 5)
- Amostragem e conversão analógico-digital (Cap. 6)
- Princípios de transmissão digital (Cap. 7)
- Distribuições de probabilidade (Cap. 8)
- Processos aleatórios (Cap. 9)
- Análise de desempenho dos sistemas de comunicações digitais (Cap. 10)