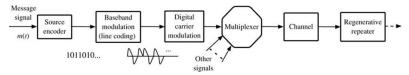
Princípios da Transmissão Digital

Edmar J Nascimento

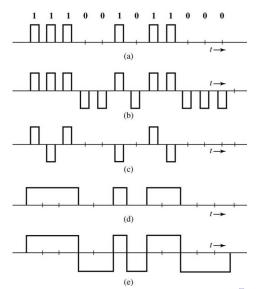

Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica

www.univasf.edu.br/~edmar.nascimento

October 25, 2020

Sistemas de Comunicações Digitais

 Um sistema de comunicação digital é formado por diversos componentes: fonte, codificador de linha, modulador, multiplexador e repetidor regenerador



- Codificador de fonte
 - Sequência de dígitos (números) provenientes de alguma fonte de informação
 - Sequência de números binários provenientes de algum tipo de PCM binário

Sistemas de Comunicações Digitais

- Modulação em banda base (Codificação de linha)
 - Codifica a saída da fonte em pulsos elétricos
 - Vários tipos de codificação são possíveis (on-off, polar, bipolar, etc.)
 com possíveis variações na largura do pulso
 - No esquema NRZ (nonreturn-to-zero), o pulso ocupa toda a largura do bit
 - No esquema RZ (return-to-zero), o pulso se anula antes do intervalo do bit seguinte
 - O formato do pulso não é necessariamente retangular como será visto na sequência

Códigos de Linha

4/32

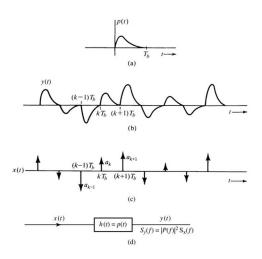
Codificação de Linha (Critérios)

- Um código de linha é escolhido de modo a satisfazer algumas propriedades:
 - A largura de banda de transmissão deve ser a menor possível
 - Para uma dada largura de banda e uma dada probabilidade de erro, a potência transmitida deve ser a menor possível
 - Deve propiciar a detecção ou a correção de erros
 - Deve possuir nível DC nulo para evitar problemas nos repetidores
 - Deve incluir a informação de relógio nos dados transmitidos
 - Deve ser transparente, ou seja, deve ser capaz de transmitir dados corretamente independente do padrão dos dados transmitidos

Sistemas de Comunicações Digitais

- Multiplexador
 - Combina várias fontes de dados através de intercalamento
- Repetidor Regenerativo
 - São usados ao longo da linha de transmissão com o objetivo de regenerar o sinal
 - Evita o acumulo de ruído
 - Para que o repetidor funcione, é necessário que ele disponha do sinal de relógio
 - O sinal de relógio pode ser inserido no próprio sinal se o código de linha for adequadamente escolhido
 - O relógio pode ser extraído usando-se um circuito ressonante sintonizado na frequência do relógio

- As características espectrais de um código de linha são inferidas a partir do cálculo da densidade espectral de potência
- Considerações:
 - Pulsos são espaçados de T_b segundos (T_b Tempo de bit)
 - ullet A taxa de transmissão é dada por $R_b=1/T_b$ pulsos por segundo
 - O pulso básico é denotado por p(t) e a sua transformada de Fourier por $P(\omega)$ ou P(f)
 - A informação é representada por uma sequência de pulsos $a_k p(t)$ denotada por y(t)
 - Os códigos de linha on-off, polar e bipolar são casos especiais em que $a_k \in \{-1,0,1\}$ com restrições na forma do pulso básico


- O trem de pulsos y(t) pode ser representado como a saída de um sistema linear tendo como entrada impulsos de área a_k e resposta ao impulso h(t) = p(t)
- Nesse caso, a DEP de y(t) é dada por:

$$S_y(\omega) = |H(\omega)|^2 S_x(\omega) = |P(\omega)|^2 S_x(\omega)$$

Em que,

$$S_{x}(\omega) = \mathcal{F}\{\mathcal{R}_{x}(\tau)\}$$

ullet O problema se reduz ao cálculo da autocorrelação temporal de x(t)

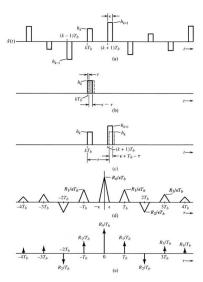
• A autocorrelação de x(t) pode ser calculada considerando-se uma aproximação dos impulsos por pulsos retangulares de largura ϵ e altura h_k

$$\epsilon h_k = a_k$$

• Sendo $\hat{x}(t)$ o trem de pulsos retangulares correspondente ao trem de impulsos x(t), então:

$$\mathcal{R}_{\hat{x}}(au) = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} \hat{x}(t) \hat{x}(t- au) dt$$

• Se $\tau < \epsilon$, então:


$$\mathcal{R}_{\hat{x}} = \lim_{T \to \infty} \frac{1}{T} \sum_{k} h_{k}^{2}(\epsilon - \tau) = \lim_{T \to \infty} \frac{1}{T} \sum_{k} a_{k}^{2} \left(\frac{\epsilon - \tau}{\epsilon^{2}}\right)$$
$$= \frac{R_{0}}{\epsilon T_{b}} \left(1 - \frac{\tau}{\epsilon}\right), \quad R_{0} = \lim_{T \to \infty} \frac{T_{b}}{T} \sum_{k} a_{k}^{2}$$

• Em um intervalo de duração T, há $N = T/T_b$ pulsos espaçados a cada T_b segundos, logo:

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \sum_k a_k^2 = E[a_k^2]$$

• Como $\mathcal{R}_{\hat{x}}(\tau)$ é uma função par de τ , então:

$$\mathcal{R}_{\hat{\mathbf{x}}} = \frac{R_0}{\epsilon T_b} \left(1 - \frac{|\tau|}{\epsilon} \right), \quad |\tau| < \epsilon$$

12/32

- Quando τ se aproxima de T_b , o k-ésimo pulso de $\hat{x}(t-\tau)$ começa a se sobrepor ao (k+1)-ésimo pulso de $\hat{x}(t)$
- De modo similar, $\mathcal{R}_{\hat{\mathbf{x}}}(\tau)$ será dado por um pulso triangular de largura 2ϵ e altura $R_1/\epsilon T_b$, com

$$R_1 = \lim_{T \to \infty} \frac{T_b}{T} \sum_k a_k a_{k+1} = \lim_{N \to \infty} \frac{1}{N} \sum_k a_k a_{k+1} = E[a_k a_{k+1}]$$

• Resultados semelhantes, são obtidos para $\tau=2T_b,3T_b,\cdots$, de modo que:

$$R_n = \lim_{T \to \infty} \frac{T_b}{T} \sum_k a_k a_{k+n} = \lim_{N \to \infty} \frac{1}{N} \sum_k a_k a_{k+n} = E[a_k a_{k+n}]$$

- ullet No limite, quando $\epsilon o 0$, $\mathcal{R}_{\hat{\mathbf{x}}}(au) o \mathcal{R}_{\mathbf{x}}(au)$
- Os pulsos triangulares tendem a impulsos de área R_n/T_b e assim:

$$\mathcal{R}_{x}(\tau) = \frac{1}{T_{b}} \sum_{n=-\infty}^{\infty} R_{n} \delta(\tau - nT_{b})$$

• A DEP de x(t) é dada então por:

$$S_x(\omega) = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} R_n e^{-jn\omega T_b} = \frac{1}{T_b} \left(R_0 + 2 \sum_{n=1}^{\infty} R_n \cos n\omega T_b \right)$$

Densidade Espectral de Potência (Expressões)

• Assim, a DEP de y(t) é dada por:

$$S_{y}(\omega) = |P(\omega)|^{2} S_{x}(\omega) = \frac{|P(\omega)|^{2}}{T_{b}} \left(\sum_{n=-\infty}^{\infty} R_{n} e^{-jn\omega T_{b}} \right)$$
$$= \frac{|P(\omega)|^{2}}{T_{b}} \left(R_{0} + 2 \sum_{n=1}^{\infty} R_{n} \cos n\omega T_{b} \right)$$

• Para cada código de linha, tem-se um $P(\omega)$ e um R_n específico que permitem calcular a DEP de y(t)

DEP para Sinalização Polar

- Na sinalização polar tem-se:
 - 1 é transmitido por p(t) ($a_k = 1$)
 - 0 é transmitido por -p(t) ($a_k = -1$)
- Admite-se ainda que Prob[bit = 1] = Prob[bit = 0] = 1/2
- Logo,

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \sum_k a_k^2 = \lim_{N \to \infty} \frac{1}{N}(N) = 1$$

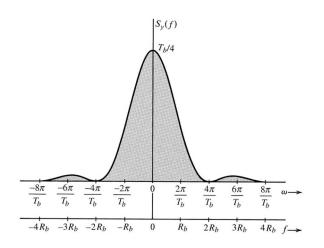
• Como a_k e a_{k+n} podem assumir ± 1 , o produto $a_k a_{k+n}$ assume +1 ou -1 com igual possibilidade, assim:

$$R_n = \lim_{N \to \infty} \frac{1}{N} \sum_k a_k a_{k+n} = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (1) + \frac{N}{2} (-1) \right] = 0$$

DEP para Sinalização Polar

Assim, para a sinalização polar, a DEP é dada por:

$$S_y(\omega) = \frac{|P(\omega)|^2}{T_b}R_0 = \frac{|P(\omega)|^2}{T_b}$$

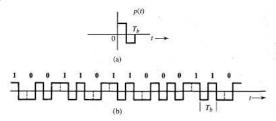

ullet Se o pulso p(t) for um pulso retangular de largura $T_b/2$ (RZ), ou seja

$$p(t) = rect\left(\frac{t}{T_b/2}\right) \iff P(\omega) = \frac{T_b}{2}sinc\left(\frac{\omega T_b}{4}\right)$$

Então:

$$S_y(\omega) = \frac{T_b}{4} sinc^2 \left(\frac{\omega T_b}{4}\right)$$

DEP para Sinalização Polar (Pulso RZ Retangular)


DEP para Sinalização Polar

- ullet Observa-se que a banda essencial é $2R_b$ no caso RZ
- Mas, para transmitir R_b bits por segundo é necessário no mínimo $R_b/2~{\rm Hz}$
 - Largura de banda da sinalização polar RZ é quatro vezes maior que a mínima teórica
 - Na sinalização polar NRZ, a banda essencial é R_b , resultando em uma banda duas vezes maior que a mínima teórica
 - Não é eficiente do ponto de vista espectral
- A sinalização polar não permite a detecção de erros
- O nível DC na DEP não é nulo, o que inviabiliza o acoplamento AC
- Como pontos positivos, a sinalização polar leva vantagem nos requisitos de potência e na transparência

• Para que a DEP de um código de linha, $S_y(\omega)$ tenha nível DC nulo, deve-se ter:

$$P(0) = 0 \Longrightarrow \int_{-\infty}^{\infty} p(t)dt = 0$$

 Ou seja, a área do pulso deve ser nula: sinalização Manchester (Split-phase)

- Na sinalização on-off tem-se:
 - 1 é transmitido por p(t) ($a_k = 1$)
 - 0 é transmitido por nenhum pulso $(a_k = 0)$
- Logo,

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (1) + \frac{N}{2} (0) \right] = \frac{1}{2}$$

• Como a_k e a_{k+n} podem assumir 1 ou 0, o produto $a_k a_{k+n}$ assume 1×1 , 1×0 , 0×1 ou 0×0 com igual possibilidade, assim:

$$R_n = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{4} (1) + \frac{3N}{4} (0) \right] = \frac{1}{4}$$

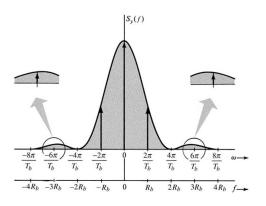
• Com os valores obtidos, a DEP de y(t) é dada por:

$$S_{y}(\omega) = \frac{|P(\omega)|^{2}}{T_{b}} \left(\frac{1}{2} + \frac{1}{4} \sum_{n=-\infty}^{\infty} e^{-jn\omega T_{b}}\right)$$
$$= \frac{|P(\omega)|^{2}}{T_{b}} \left(\frac{1}{4} + \frac{1}{4} \sum_{n=-\infty}^{\infty} e^{-jn\omega T_{b}}\right)$$

Usando a fórmula abaixo

$$\sum_{n=-\infty}^{\infty} e^{-jn\omega T_b} = \frac{2\pi}{T_b} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T_b}\right)$$

• Então, a DEP de y(t) é:


$$S_{y}(\omega) = \frac{|P(\omega)|^{2}}{4T_{b}} \left[1 + \frac{2\pi}{T_{b}} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T_{b}}\right) \right]$$

ullet Se o pulso p(t) for um pulso retangular de largura $T_b/2$ (RZ), ou seja

$$p(t) = rect\left(\frac{t}{T_b/2}\right) \iff P(\omega) = \frac{T_b}{2}sinc\left(\frac{\omega T_b}{4}\right)$$

Então:

$$S_y(\omega) = \frac{T_b}{16} sinc^2 \left(\frac{\omega T_b}{4}\right) \left[1 + \frac{2\pi}{T_b} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T_b}\right)\right]$$

- Observa-se que a banda essencial é 2R_b
 - Assim como a sinalização polar, a sinalização on-off não é eficiente do ponto de vista espectral
- ullet O espectro apresenta componentes discretas periódicas de frequência R_b Hz
- A sinalização on-off não permite a detecção de erros
- O nível DC na DEP não é nulo, o que inviabiliza o acoplamento AC
- Não é transparente e é menos imune a interferências que a sinalização polar

DEP para a Sinalização Bipolar

- Na sinalização bipolar (pseudo-ternária) tem-se:
 - 1 é transmitido por p(t) ou -p(t) $(a_k = \pm 1)$
 - 0 é transmitido por nenhum pulso $(a_k = 0)$
- Logo,

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (\pm 1)^2 + \frac{N}{2} (0) \right] = \frac{1}{2}$$

• A sequência (a_k, a_{k+1}) pode assumir os valores (1, 1), (1, 0), (0, 1), (0, 0), assim:

$$R_1 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{4} (-1) + \frac{3N}{4} (0) \right] = -\frac{1}{4}$$

26 / 32

DEP para a Sinalização Bipolar

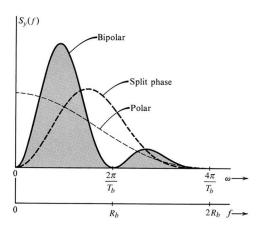
• De modo similar, a sequência (a_k, a_{k+2}) pode assumir os valores (1,1,1), (1,0,1), (1,1,0), (1,0,0), (0,1,1), (0,1,0), (0,0,1) e (0,0,0), assim:

$$R_2 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{8} (-1) + \frac{N}{8} (1) + \frac{6N}{8} (0) \right] = 0$$

• Em geral, para n > 1, tem-se que:

$$R_n = 0$$

DEP para a Sinalização Bipolar

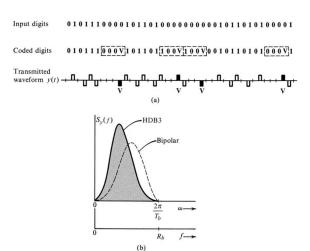

• Então, a DEP de y(t) é:

$$S_y(\omega) = \frac{|P(\omega)|^2}{2T_b} [1 - \cos \omega T_b] = \frac{|P(\omega)|^2}{T_b} \sin^2 \frac{\omega T_b}{2}$$

- Observa-se que $S_y(\omega)=0$ para $\omega=0$, independentemente do valor de $P(\omega)$
- A banda essencial é R_b Hz
- Para o pulso RZ, tem-se:

$$S_y(\omega) = \frac{T_b}{4} sinc^2 \left(\frac{\omega T_b}{4}\right) sin^2 \left(\frac{\omega T_b}{2}\right)$$

DEP para a Sinalização RZ (Potência Normalizada)


DEP para Sinalização Bipolar

- ullet Observa-se que a banda essencial é R_b
 - Metade do valor obtido para as sinalizações polar e on-off
- A sinalização bipolar tem espectro nulo no nível DC e permite a detecção de erros
- Como desvantagens, a sinalização bipolar requer mais potência que a sinalização polar e também não é transparente
 - Esquemas de substituição são necessários: HDB e B8ZS

Sinalização HDB

- Para eliminar o problema da não transparência da sinalização bipolar, utiliza-se o esquema de substituição HDB (High-density bipolar)
 - Quando N+1 zeros sucessivos ocorrem, eles são substituídos por uma sequência de dígitos especiais
- No HDB3, as sequências são:
 - 000V e B00V (B=1 conforme a regra bipolar e V=1 contrariando a regra bipolar)
- ullet A sequência B00V é escolhida se há um número par de 1s após a última sequência especial
- ullet A sequência $000\,V$ é escolhida se há um número ímpar de 1s após a última sequência especial

Sinalização HDB

