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ABSTRACT
Benchmarking systems in a repeatable fashion is complex and error-
prone. The systems community has repeatedly discussed the com-
plexities of benchmarking and how to properly report benchmark-
ing results. Using the example of SQLite, we examine the current
state of benchmarking in industry and academia. We show that
changing just one parameter in SQLite can change the performance
by 11.8X, and that changing multiple parameters can lead up to a
28X difference in performance. We find that these configuration
parameters are often not set or reported in academic research, lead-
ing to incomplete and misleading evaluations. Running different
off-the-shelf SQLite benchmarking tools such as Mobibench and
Androbench in their default configuration shows upto 50% differ-
ence in performance. We hope this paper incites discussion in the
systems community and among SQLite developers. We hope that
our detailed analysis will help application developers to choose op-
timal SQLite parameters to achieve better performance.
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1 INTRODUCTION
Benchmarks occupy an important place in the systems commu-
nity: system design and development is driven by the results of
carefully chosen and widely-agreed upon benchmarks. For exam-
ple, the Yahoo Cloud Serving Benchmark [1] is used extensively
to benchmark the performance of key-value stores such as Lev-
elDB [2] and RocksDB [3], and the TPC benchmarks [4, 5] are used
to test the performance of databases and transaction processing
systems. Architects base design decisions on such benchmarks.
Industry makes purchasing decisions (worth millions of dollars)
based on such benchmarks. Academic research also bases its re-
sults on such benchmarks. Thus, proper benchmarking is vital to
the systems community.

Unfortunately, benchmarking complex systems in a repeatable
fashion is a hard problem. Since benchmark results often depend
upon a large number of factors both in the benchmark itself and
in the operating system environment, producing repeatable results
requires a great deal of care. Previous work byMytkowicz et al. [6]
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and Tarasov et al. [7] has shown how a seemingly innocuous pa-
rameter in an experimental setup can lead to a significant bias
in evaluating systems. They review some of the commonly used
benchmarks to show how their performance differs by orders of
magnitude [7].

Despite discussion in the systems community [6, 7], we believe
two problems related to benchmarking are still rampant in indus-
try and academia. First, there are several industrial tools which
benchmark the same system and yet provide widely varying re-
sults. Second, when researchers report the results from bench-
marks, they often omit important details about the setup without
which it is impossible to reproduce their results. The combination
of these problems lead to misleading results that cannot be directly
compared, resulting in confusion.

To illustrate these points, we examine the benchmarking of SQLite [8],
a lightweight, embedded relational database popular in mobile sys-
tems. SQLite is a commonly used benchmark inmanymobile appli-
cations (such as Twitter and Facebook) to store their data [9, 10].
The SQLite website reports billions of deployments across differ-
ent kinds of devices [11]. SQLite is also widely used in academic
research. For example, SQLite has been used as a benchmark for
evaluating new I/O scheduling frameworks [12], the Linux read-
ahead mechanism [13], non-volatile write-ahead logging [14], and
hardware-assisted fault tolerance [15]. Investigating the publica-
tions in the area of storage and systems in the past eight years,
including papers from several premier conferences, we find that
work involving SQLite has been done in 46 of these publications,
with 25 papers published in the past two years [16]. Thus, bench-
marking SQLite is an important part of evaluating these systems.
In this paper, we focus on the evaluation of SQLite on the Android
platform.

Evaluating SQLite performance is complex and error-prone. SQLite
performance depends on a number of parameters, and as we show
later, changing just one parameter results in performance differing
by a staggering 11.8X (§3). Figure 1 shows how performance can
differ by 28X, by just varying a few parameters and switching the
underlying file system from ext4 to F2FS.

We see that developers and researchers still do not report the
required configuration parameters that affect the performance of
SQLite. The popular tools available to benchmark SQLite give in-
consistent results, often differing by 50% or more (§2) in its default
configuration. When we investigated 16 papers from the past two
years whose evaluation included SQLite, we find that none report
all the parameters required to meaningfully compare results: ten
papers do not report any parameters [17–26], five do not report the
syncmode [27–31], while only one paper reports all parameters ex-
cept write-ahead log size [32]. Without reporting how SQLite was
configured, it is meaningless to compare SQLite results.
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Figure 1: Performance Impact of Parameters. The figure
shows the 28X difference in performance from configuring
SQLite parameters. Default config: journal mode DELETE,
synch mode FULL, file system ext4. Custom config: journal
mode WAL, WAL size 1 MB, synch mode NORMAL, file sys-
tem F2FS.

Most applications on Android use SQLite as the backend data-
store with its default configuration, which is not performance effi-
cient. It is important for the application developers to understand
how different configuration parameters affect the performance of
SQLite. We believe such understanding will be useful to academic
researchers as well. Millions of Android users already use tools
such as Mobibench to evaluate phones and storage devices. Thus,
we believe that it is essential for researchers and developers to un-
derstand how to properly evaluate SQLite, and how to report re-
sults in a complete manner.

In this paper, we analyse the influence of different factors on
SQLite performance (§3). The aim of our analysis is two fold. First,
we intend our analysis to help application developers decide on an
optimal SQLite configuration to achieve better performance. Sec-
ond, we hope this paper serves as a wakeup call in the system com-
munity and improves the way in which benchmarking results (es-
pecially for SQLite) are presented in future.

2 TOOLS TO BENCHMARK SQLITE
We examined 46 recent papers (published since 2008) that used
SQLite. Several use benchmarking tools like Mobibench [33], RL-
bench [34], Androbench [35] to evaluate their system and applica-
tion. A closer look at these publications reveal that seven of these
works have used Mobibench to benchmark SQLite in their appli-
cations, making it one of the most sought after tools in the recent
times for SQLite benchmarking. Four papers used RLbench and
three papers used Androbench.

Table 1 shows how the performance of these benchmarks dif-
fer. In their default configurations, on the same device, RLbench
and Androbench report 50% better throughput than Mobibench.
Once a single parameter, the journaling mode, is switched from
DELETE to WAL, Androbench achieves 3X the throughput of
Mobibench.

Thus, it is easy to be mislead by the results of these benchmark-
ing tools if the parameters are not set correctly. It is not enough if

Tool Default TPS Custom TPS
MobiBench 20 57
RLBench 30 -

Androbench 29 150

Table 1: Benchmarking Tools. The table shows the through-
put achieved by three SQLite benchmarking tools for 1000 in-
sert operations. Note how the results differ by 50% in their
default configuration, and as much as 3X after changing a
single parameter.

a tool becomes a widely used benchmark – for results to be com-
pared, the relevant parameters should be reported.

3 PARAMETERS AFFECTING PERFORMANCE
We now describe the various parameters that can affect SQLite per-
formance and how the performance varies with different settings.
In order to evaluate this, we have developed an application in An-
droid that allows us to configure different parameters for SQLite,
as none of the existing benchmarking tools allow us to vary all of
these parameters.
Hardware Setup. We run our experiments on a Samsung Galaxy
Nexus S phonewithDual-core, 1.2GHz, Cortex-A9 processor; 32GB
internal memory and 1GB RAM running Android 6.0.1 (cyanogen-
mod 13.0) on Linux 3.0.101 (F2FS enabled) kernel. The results pre-
sented in this paper are from experiments run on Android 6.0.1.
Experiments were also performed on Android 4.2.1 to compare be-
tween different ROM versions, which is not presented.

We design experiments where we vary one parameter while
keeping all other parameters constant. The default setting for SQLite
is DELETE journal mode with FULL synchronization on Ext4
file system in ordered mode. We report the throughput (txs/sec)
for performing 3000 transactions (1000 inserts, 1000 updates, and
1000 deletes). The experiments are performed on a database pre-
populated with 100K rows. We report the average of ten runs.

We now describe the parameters that affect SQLite performance.
Figure 2 shows the performance implication of changing some of
these parameters, one parameter at a time.
SQLite Journaling mode. The SQLite journaling mode defines
the type of journal used: DELETE (default), TRUNCATE,Write-
Ahead Log (WAL), PERSIST, MEMORY and OFF. Figure 2a
shows the drastic 11.8X improvement in performance by just chang-
ing the SQLite journal mode from DELETE to WAL. We later dis-
cuss how the SQLite journaling mode interacts with the file system
journaling mode.
Synchronization Mode. SQLite synchronization modes controls
the frequency at which fsync() command is issued by the SQLite
library. The parameter has three values: OFF, NORMAL, and
FULL. Figure 2b shows how performance increases by 54% when
changing the synchronization mode from FULL to NORMAL.
SQLite Journal Size. This parameter is the size of the journal in
SQLite, in bytes. Figure 2c illustrates how performance reduces by
5X when the journal size is reduced to 64 KB from the unlimited
default setting.
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(a) Varying journal mode only (b) Varying synchronization mode only (c) Varying journal size only

Figure 2: Performance impact of a single SQLite parameter change. The figure shows the 11.8X difference in performance due to
changing only the journal mode, 1.5X difference due to varying the synchronization mode alone and a 5X change by modifying
only the journal size.

File System. The file system on the Android device can also im-
pact the performance of applications that use SQLite, as it poten-
tially changes the IO pattern at the block level. We present an
analysis of how SQLite parameters interact with the file system
type and the file system journaling mode.
Pre-populating the Database. To obtain realistic performance
estimates, it is necessary to pre-populate the database on which
the SQLite operations are performed. We discuss how not doing
so can seem to increase the performance and why this has to be
avoided.

Apart from the parameters presented above, other factors such
as the Flash Card used [36], the SQLite library version, and the
Android version also affect performance. However, since the per-
formance difference is small or well studied (as in the case of the
flash card), we do not discuss such factors, but it is important to
report these parameters while presenting benchmarking results.

3.1 SQLite Journal mode
Thedifferent journalmodes of SQLite areDELETE,WAL,TRUN-
CATE,PERSIST,MEMORY andOFF.The default journalmode
is DELETE, which uses the traditional roll-back journaling mech-
anism in which the content of the database is written on to the
journal and the changes are written to the database file directly.
The journal is automatically committed and deleted at the end of
each transaction. The WAL journal mode uses write-ahead log, in
which the changes to the database are written to the journal and
is committed to the database when the user externally triggers a
commit or once a 1000 page limit is reached [37]. TRUNCATE
mode is same as the DELETE mode, except that the roll-back
journal is truncated to zero length instead of deleting it after every
transaction. In MEMORY mode, the roll-back journal is stored in-
memory which reduces the disk IO at the cost of database safety
and integrity. In a PERSIST mode, the roll-back journal is re-
written after every transaction commit, which is same as truncat-
ing the journal on a flash device. SQLite also provides an option
to turn off journaling, which improves performance by foregoing
crash consistency.

In our experiments, we compare three most commonly used
SQLite journaling modes – DELETE, WAL and OFF for differ-
ent file system (ext4) journaling modes. Figure 3a presents the
results of our experiments. We make two observations based on
the results.

First, turning off journaling in SQLite increases performance,
but at the cost of disabling the atomic commit and roll-back fea-
tures of SQLite [38]. Write ahead log (WAL) mode outperforms
DELETE mode by ∼10X in all file system configurations. This
is because in DELETE mode, the roll-back journal is deleted at
every transaction commit and hence an fsync() is initiated after
every transaction. For a workload of 1000 SQLite inserts, 1000
fsync() calls were issued in WAL mode, while 5000 fsync() calls
were issued in DELETE mode.

Second, as expected, the writeback file-system mode performs
the best, while data journalingmode performs theworst [39]. Since
data journaling generates the most IO (2X the IO generated by
ordered mode), and writeback has the least ordering constraints,
these results are consistent with expectations. We see the same
pattern in other experiments as well.

3.2 SQLite Synchronization Mode
SQLite allows three modes of synchronization to persist the data
written–FULL,NORMAL andOFF.FULL synchronizationwrites
changes to the database on each commit, while NORMAL mode
only writes to the log.In the OFF mode, dirty data is not forced to
storage, and instead the operating system writes out the dirty data
later. OFF mode can lead to corruption on crash, and hence is not
preferred. Thus the three modes differ in the amount of IO and
the number of fsync() calls issued. In practice, SQLite is run in
WAL mode with NORMAL synchronization, to strike a balance
between durability and performance.

Figure 3b shows the impact of modifying the synchronization
mode in the default DELETE mode across Ext4 file system config-
urations. As expected, turning off all consistency mechanisms in-
creases performance significantly. Note that while changing from
FULL to NORMAL synch mode increases performance by 1.5X
in DELETE mode, it increases performance by 3X in WAL mode.
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(a) Performance for different SQLite journal modes. The
figure shows that WAL mode performance is 10X higher
than DELETE mode. Data journaling, ordered, and
writeback are ext4 journaling modes.

(b) Performance for different synchronization modes.
The figure shows that turning OFF SQLite synchroniza-
tion gives the best performance, and NORMAL synch
mode performs 50% better than FULL synch mode.

(c) Performance for different WAL sizes. The figure
shows that the performance of SQLite increases as the
WAL journal grows. Performance differs by 5X difference
between WAL sizes of 64KB and 1 MB.

(d) Performance with pre-population.The figure shows
that the throughput decreases by 50% for update and
delete operations when the database is pre-populated.

Figure 3: Impact of various parameters on SQLite performance

3.3 SQLite Journal Size
In the WAL mode of SQLite, by default, there is no limit set on
the journal size, which allows it to grow unbounded, thereby po-
tentially affecting read performance [37]. Figure 3c shows the
throughput across 1000 SQLite inserts, updates and deletes for dif-
ferent WAL sizes and different file system modes in ext4.

We observe that larger WAL sizes lead to higher throughput.
There is a 5X performance difference between WAL sizes of 64
KB and 1 MB. When the WAL gets full, a checkpoint is triggered
with an associated fsync() call. If the WAL is not full, a check-
point is triggered every 1000 pages that are written to the WAL.
For smaller WAL sizes, the WAL becomes full quickly, leading to
performance degradation. Increasing the WAL size beyond 1000
pages does not help since checkpointing will be triggered for every
1000 pages anyway.

There is no performance benefit to increasing the WAL size be-
yond 1 MB, and bounding the WAL at this size helps maintain a
trade-off between read and write performance of SQLite.

3.4 Pre-populating the Database
For many SQLite operations, the state of the database on which op-
erations are performed, significantly affects it’s performance. In
the default configuration of SQLite (DELETE mode), when data
is updated in an operation, the old data is first copied into a jour-
nal, and the new data is written directly into the database. Thus,
whether the database already contains data or not significantly af-
fects performance.

We conducted experiments where SQLite operations such as in-
sert, update, and deletewere performed both on an empty database,
and a database pre-populated with 100K entries. Figure 3d shows
the results.
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(a) Journal:DELETE, Synch:FULL (b) Journal:TRUNCATE, Synch:NORMAL (c) Journal:WAL, Synch:NORMAL

Figure 4: Performance on different filesystems. The figure shows how SQLite performance varies drastically (upto 20X) depend-
ing upon the underlying file system and the SQLite journal mode. Based on the journal mode, either ext4 or F2FS perform best
for SQLite operations.

We observe that for update and delete operations, performance
is close to 2X higher if run on an empty database. Most bench-
marking tools do not pre-populate the database, thus producing
unrealistic performance numbers.

3.5 File Systems
The file system on which SQLite is run also impacts its perfor-
mance, as application writes are transformed into different block
IO by the file system. Having discussed how SQLite performance
varies with ext4 journaling mode in previous sections, we now
present how SQLite performance changes when run on a file sys-
tem designed specifically for flash: F2FS [30].

Figure 4 shows the performance of different SQLite operations
on ext4 and F2FS. We observe that in the default SQLite config-
uration, ext4 performs better than F2FS for all SQLite operations.
In contrast, in the TRUNCATE/Synch-NORMAL configuration,
F2FS outperforms ext4 in all SQLite operations. In theWAL/Synch-
NORMAL configuration, SQLite updates and deletes perform∼4X
better in F2FS, whereas SQLite inserts are 30% faster in ext4. Thus,
depending on the experiment you choose, you can show either
F2FS or ext4 performing better for SQLite operations! We note that
the F2FS paper only reports performance on WAL mode, without
reporting the synchronization setting [30].

We also observed a 6X improvement in performance when the
synchronization mode is changed from FULL To NORMAL in
WAL journal mode in F2FS.

4 CONCLUSION
We inspect the state of benchmarking (and how results are reported)
in industry and academia, using SQLite as an example. We show
that benchmarking SQLite is complex and that SQLite performance
depends upon a large number of parameters. Tuning a few param-
eters can vary performance significantly (upto 28X). We show that
industrial tools for benchmarking SQLite report widely varying re-
sults, and that academic research does not report on all the config-
uration parameters required to reproduce benchmarking results.

We hope our study accomplishes two objectives. First, we hope
it helps developers and researchers realize the impact of these pa-
rameters on SQLite performance. Second, and more importantly,
we hope it spurs discussion about what must be reported in con-
junction with SQLite results to make the results repeatable and
comparable. Given the importance of benchmarks in the systems
community and the rising use of SQLite, we believe this discussion
is crucial and timely.
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